67 research outputs found

    The Asymmetric Exclusion Process revisited: Fluctuations and Dynamics in the Domain Wall Picture

    Full text link
    We investigate the total asymmetric exclusion process by analyzing the dynamics of the shock. Within this approach we are able to calculate the fluctuations of the number of particles and density profiles not only in the stationary state but also in the transient regime. We find that the analytical predictions and the simulation results are in excellent agreement.Comment: 6 figures. Submitted to J. Stat. Phy

    Statistical Physics of Vehicular Traffic and Some Related Systems

    Full text link
    In the so-called "microscopic" models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a "particle"; the nature of the "interactions" among these particles is determined by the way the vehicles influence each others' movement. Therefore, vehicular traffic, modeled as a system of interacting "particles" driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called "particle-hopping" models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.Comment: 170 pages, Latex, figures include

    Motility states in bidirectional cargo transport

    Full text link
    Intracellular cargos which are transported by molecular motors move stochastically along cytoskeleton filaments. In particular for bidirectionally transported cargos it is an open question whether the characteristics of their motion can result from pure stochastic fluctuations or whether some coordination of the motors is needed. The results of a mean-field model of cargo-motors dynamics, which was proposed by M\"uller et al.[1] suggest the existence of high motility states which would result from a stochastic tug-of-war. Here we analyze a non-mean field extension of their model, that takes explicitly the position of each motor into account. We find that high motility states then disappear. We consider also a mutual motor-motor activation, as an explicit mechanism of motor coordination. We show that the results of the mean-field model are recovered only in case of a strong motor-motor activation in the limit of a high number of motors.Comment: 6 pages, 10 figure

    Environmental control of microtubule-based bidirectional cargo-transport

    Full text link
    Inside cells, various cargos are transported by teams of molecular motors. Intriguingly, the motors involved generally have opposite pulling directions, and the resulting cargo dynamics is a biased stochastic motion. It is an open question how the cell can control this bias. Here we develop a model which takes explicitly into account the elastic coupling of the cargo with each motor. We show that bias can be simply controlled or even reversed in a counterintuitive manner via a change in the external force exerted on the cargo or a variation of the ATP binding rate to motors. Furthermore, the superdiffusive behavior found at short time scales indicates the emergence of motor cooperation induced by cargo-mediated coupling

    Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    Full text link
    Cells are strongly out-of-equilibrium systems driven by continuous energy supply. They carry out many vital functions requiring active transport of various ingredients and organelles, some being small, others being large. The cytoskeleton, composed of three types of filaments, determines the shape of the cell and plays a role in cell motion. It also serves as a road network for the so-called cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated, in particular because its breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. We first review some biological facts obtained from experiments, and present some modeling attempts based on cellular automata. We start with background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the transportation of large cargos by multiple motors, we concentrate on axonal transport, because of its relevance for neuronal diseases. It is a challenge to understand how this transport is organized, given that it takes place in a confined environment and that several types of motors moving in opposite directions are involved. We review several features that could contribute to the efficiency of this transport, including the role of motor-motor interactions and of the dynamics of the underlying microtubule network. Finally, we discuss some still open questions.Comment: 74 pages, 43 figure

    Fluctuation effects in bidirectional cargo transport

    Full text link
    We discuss a theoretical model for bidirectional cargo transport in biological cells, which is driven by teams of molecular motors and subject to thermal fluctuations. The model describes explicitly the directed motion of the molecular motors on the filament. The motor-cargo coupling is implemented via linear springs. By means of extensive Monte Carlo simulations we show that the model describes the experimentally observed regimes of anomalous diffusion, i.e. subdiffusive behavior at short times followed by superdiffusion at intermediate times. The model results indicate that subdiffuse regime is induced by thermal fluctuations while the superdiffusive motion is generated by correlations of the motors' activity. We also tested the efficiency of bidirectional cargo transport in crowded areas by measuring its ability to pass barriers with increased viscosity. Our results show a remarkable gain of efficiency for high viscosities.Comment: 10 pages, 6 figure
    • …
    corecore